14 research outputs found

    Paper Session II-C - Data Access and Procedure Generation for the International Space Station

    Get PDF
    The Intelligent Virtual Station (IVS) has been developed by the Smart Systems Research Laboratory at the NASA Ames Research Center as a solution to some of the training and operations challenges faced by organizations like the International Space Station training facilities and Mission Control engineering teams. At present, astronaut crews are constrained by limited access to physical mockups, which themselves have a built-in 1-g limitation. Mission operations teams are faced with the daunting task of controlling the operations and maintenance of an ever-changing Station in space. Many operations teams create and follow textual procedures without the ability to visualize the given actions or alternatives. The IVS allows users to easily generate and view procedures to enhance training and operations. Because training and mission operations are of crucial importance to the International Space Station and other similarly sophisticated programs, this paper is focused on the IVS integrated procedure tool

    Discrete, Circulation-Preserving, and Stable Simplicial Fluids

    Get PDF
    Visual quality, low computational cost, and numerical stability are foremost goals in computer animation. An important ingredient in achieving these goals is the conservation of fundamental motion invariants. For example, rigid and deformable body simulation has benefited greatly from conservation of linear and angular momenta. In the case of fluids, however, none of the current techniques focuses on conserving invariants, and consequently they often introduce a visually disturbing numerical diffusion of vorticity. Visually just as important is the resolution of complex simulation domains. Doing so with regular (even if adaptive) grid techniques can be computationally delicate. In this thesis we describe a novel technique for the simulation of fluid flows. It is designed to respect the defining differential properties, i.e., the conservation of circulation along arbitrary loops as they are transported by the flow. Consequently, our method offers several new and desirable properties: (1) arbitrary simplicial meshes (triangles in 2D, tetrahedra in 3D) can be used to define the fluid domain; (2) the computations are efficient due to discrete operators with small support; (3) the method is stable for arbitrarily large time steps; (4) it preserves discrete circulation avoiding numerical diffusion of vorticity; and (5) its implementation is straightforward.</p

    Building your own DEC at home

    No full text
    The methods of Discrete Exterior Calculus (DEC) have given birth to many new algorithms applicable to areas such as fluid simulation, deformable body simulation, and others. Despite the (possibly intimidating) mathematical theory that went into deriving these algorithms, in the end they lead to simple, elegant, and straightforward implementations. However, readers interested in implementing them should note that the algorithms presume the existence of a suitable simplicial complex data structure. Such a data structure needs to support local traversal of elements, adjacency information for all dimensions of simplices, a notion of a dual mesh, and all simplices must be oriented. Unfortunately, most publicly available tetrahedral mesh libraries provide only unoriented representations with little more than vertex-tet adjacency information (while we need vertex-edge, edge-triangle, edge-tet, etc.). For those eager to implement and build on the algorithms presented in this course without having to worry about these details, we provide an implementation of a DEC-friendly tetrahedral mesh data structure in C++. This chapter documents the ideas behind the implementation

    Building your own DEC at home

    No full text
    The methods of Discrete Exterior Calculus (DEC) have given birth to many new algorithms applicable to areas such as fluid simulation, deformable body simulation, and others. Despite the (possibly intimidating) mathematical theory that went into deriving these algorithms, in the end they lead to simple, elegant, and straightforward implementations. However, readers interested in implementing them should note that the algorithms presume the existence of a suitable simplicial complex data structure. Such a data structure needs to support local traversal of elements, adjacency information for all dimensions of simplices, a notion of a dual mesh, and all simplices must be oriented. Unfortunately, most publicly available tetrahedral mesh libraries provide only unoriented representations with little more than vertex-tet adjacency information (while we need vertex-edge, edge-triangle, edge-tet, etc.). For those eager to implement and build on the algorithms presented in this course without having to worry about these details, we provide an implementation of a DEC-friendly tetrahedral mesh data structure in C++. This chapter documents the ideas behind the implementation

    Building your own DEC at home

    No full text
    The methods of Discrete Exterior Calculus (DEC) have given birth to many new algorithms applicable to areas such as fluid simulation, deformable body simulation, and others. Despite the (possibly intimidating) mathematical theory that went into deriving these algorithms, in the end they lead to simple, elegant, and straightforward implementations. However, readers interested in implementing them should note that the algorithms presume the existence of a suitable simplicial complex data structure. Such a data structure needs to support local traversal of elements, adjacency information for all dimensions of simplices, a notion of a dual mesh, and all simplices must be oriented. Unfortunately, most publicly available tetrahedral mesh libraries provide only unoriented representations with little more than vertex-tet adjacency information (while we need vertex-edge, edge-triangle, edge-tet, etc.). For those eager to implement and build on the algorithms presented in this course without having to worry about these details, we provide an implementation of a DEC-friendly tetrahedral mesh data structure in C++. This chapter documents the ideas behind the implementation

    Discrete, Vorticity-Preserving, and Stable Simplicial Fluids

    No full text
    Visual accuracy, low computational cost, and numerical stability are foremost goals in computer animation. An important ingredient in achieving these goals is the conservation of fundamental motion invariants. For example, rigid or deformable body simulation have benefited greatly from conservation of linear and angular momenta. In the case of fluids, however, none of the current techniques focuses on conserving invariants, and consequently, they often introduce a visually disturbing numerical diffusion of vorticity. Visually just as important is the resolution of complex simulation domains. Doing so with regular (even if adaptive) grid techniques can be computationally delicate. In this chapter, we propose a novel technique for the simulation of fluid flows. It is designed to respect the defining differential properties, i.e., the conservation of circulation along arbitrary loops as they are transported by the flow. Consequently, our method offers several new and desirable properties: (1) arbitrary simplicial meshes (triangles in 2D, tetrahedra in 3D) can be used to define the fluid domain; (2) the computations are efficient due to discrete operators with small support; (3) the method is stable for arbitrarily large time steps; and (4) it preserves a discrete circulation avoiding numerical diffusion of vorticity. The underlying ideas are easy to incorporate in current approaches to fluid simulation and should thus prove valuable in many applications

    Stable, circulation-preserving, simplicial fluids

    No full text
    Visual quality, low computational cost, and numerical stability are foremost goals in computer animation. An important ingredient in achieving these goals is the conservation of fundamental motion invariants. For example, rigid and deformable body simulation benefits greatly from conservation of linear and angular momenta. In the case of fluids, however, none of the current techniques focuses on conserving invariants, and consequently, they often introduce a visually disturbing numerical diffusion of vorticity. Visually just as important is the resolution of complex simulation domains. Doing so with regular (even if adaptive) grid techniques can be computationally delicate. In this chapter, we propose a novel technique for the simulation of fluid flows. It is designed to respect the defining differential properties, i.e., the conservation of circulation along arbitrary loops as they are transported by the flow. Consequently, our method offers several new and desirable properties: (1) arbitrary simplicial meshes (triangles in 2D, tetrahedra in 3D) can be used to define the fluid domain; (2) the computations are efficient due to discrete operators with small support; (3) the method is stable for arbitrarily large time steps; (4) it preserves discrete circulation avoiding numerical diffusion of vorticity; and (5) its implementation is straightforward
    corecore